

# **CDR-MIA**

### **Carbon Dioxide Removal Model Intercomparison Assessment**

- Dr. David Keller //GEOMAR Helmholtz Centre for Ocean Research Kiel
- Dr. Nico Bauer // Potsdam Institute Climate Impact Research
- Dr. Jessica Strefler // Potsdam Institute Climate Impact Research

#### **Summary**

Continued anthropogenic greenhouse gas emissions are changing the climate threatening "severe, pervasive and irreversible" impacts. In response, there is increasing focus and study on the potential of Carbon Dioxide Removal (CDR) methods to enable "negative emissions" to complement CO<sub>2</sub> emission mitigation efforts. However, the potentially positive and negative impacts in response to large-scale CDR remain poorly quantified and elucidated. The main aim of this project is to analyze the output from the Carbon Dioxide Removal Model Intercomparison Project (CDR-MIP) experiments to better assess the potential, and risks of large-scale CDR. CDR-MIP is a new initiative that brings together a suite of Earth System Models in a common framework to investigate CDR. The 1<sup>st</sup> phase of CDR-MIP, which includes idealized experiments of direct CO<sub>2</sub> air-capture, as well as afforestation and ocean alkalinization, is designed to investigate key questions concerning (a) climate "reversibility", in the context of using CDR to return high future atmospheric CO<sub>2</sub> concentrations to a lower (e.g. present day or pre-industrial) level and (b) the potential efficacy, feedbacks, time scales, and side effects of different CDR methods. As part of CDR-MIA, the information gained from analyzing the CDR-MIP experiments will be used to better constrain the assumed effectiveness of CDR technologies in the Integrated Assessment Model (IAM)-generated Shared Socioeconomic Pathway (SSP) scenarios that are used to facilitate climate change research and assessment. Currently, it is unknown how well carbon cycle feedbacks are accounted for when CDR is included in IAM simulations and there is an urgent need to fill this knowledge gap. The results from the CDR-MIP analyses will be used to calculate a carbon cycle feedback based discount factor for CDR, which will then be used to calibrate and re-run a SSP scenario with the IAM REMIND-MAgPIE. In addition to this, new experiments will also be designed and run with the UVic model to investigate the response of the carbon cycle and climate system to the simultaneous implementation of multiple CDR methods. These experiments will build upon the CDR-MIP ones by combining some of the methods, such as afforestation and artificial ocean alkalinization. Subsequent analyses will allow the efficacy and risks of combined CDR to be compared to that of the individual CDR implementations.

## **COREQUESTIONS**

What comp onent s of the Ea rth's c limate syste m exhibi t "rev ersibil ity" when CO<sub>2</sub> i ncreas es and then d ecreas es? On what t imesc ales do these "rever ses" occur ? Whic h cha nges are irr eversi ble? If rev ersibl e, is this co mplet e reve rsibili ty or just on ave rage

•

(are there spatia l and t empor al asp ects)? • What conse quenc es might revers ibility induc ed cha nges have on soc ietal s trateg ies for climat e chang e ada ptatio n? • How much CO<sub>2</sub> would have to be r emove d to return to a s pecifi ed level, e.g., p resent day or pre-in dustri al? • How q uickly could **CDR** 

|   | remov    |
|---|----------|
|   | o atm    |
|   | c atm    |
|   | osphe    |
|   | ric      |
|   | $CO_{2}$ |
|   |          |
|   | Are      |
|   | there    |
|   | negati   |
|   | noguri   |
|   | ve con   |
|   | seque    |
|   | nces     |
|   | from     |
|   | IIOIII   |
|   | remov    |
|   | ing      |
|   | CO       |
|   |          |
|   | tuo qu   |
|   | ickly    |
|   | or slo   |
|   | wly?     |
|   | wiy:     |
| • |          |
|   | What     |
|   | are      |
|   | the      |
|   |          |
|   | short    |
|   | term     |
|   | C-       |
|   | evelo f  |
|   | cycle I  |
|   | eedba    |
|   | cks      |
|   | (e.g., r |
|   | ahoun    |
|   |          |
|   | d) ass   |
|   | ociate   |
|   | d with   |
|   | differ   |
|   | uniter   |
|   | ent      |
|   | CDR      |
|   | metho    |
|   | de?      |
|   |          |
|   | what     |
|   | are      |
|   | the co   |
|   | nsequ    |
|   | nsequ    |
|   | ences    |
|   | for ac   |
|   | counti   |
|   | ng for   |
|   |          |
|   | Crem     |
|   | oved?    |
|   |          |
| • | Are      |
|   | the ee   |
|   | the ca   |
|   |          |

|   | librati            |  |
|---|--------------------|--|
|   | ons of             |  |
|   | reduc              |  |
|   | ed-                |  |
|   | form               |  |
|   | climat             |  |
|   | e mod              |  |
|   | els,               |  |
|   | i.e.,              |  |
|   | IAMs,              |  |
|   | still              |  |
|   | correc             |  |
|   | t                  |  |
|   | when               |  |
|   | CO <sub>2</sub> is |  |
|   | remov              |  |
|   | ed                 |  |
|   | again              |  |
|   | from               |  |
|   | the at             |  |
|   | mosp               |  |
|   | here?              |  |
|   | Are                |  |
|   | CDR                |  |
|   | metho              |  |
|   | ds as              |  |
|   | effecti            |  |
|   | ve as              |  |
|   | assum              |  |
|   | ed?                |  |
|   | How                |  |
|   | does e             |  |
|   | fficie             |  |
|   | ncy                |  |
|   | scale?             |  |
|   |                    |  |
| • | What               |  |
|   | are                |  |
|   | the                |  |
|   | short-             |  |
|   | and lo             |  |
|   | nger-              |  |
|   | term               |  |
|   | physic             |  |
|   | al/che             |  |
|   | mical/             |  |
|   | biolog             |  |
|   | ical fe            |  |
|   | edbac              |  |
|   | KS                 |  |
|   | and                |  |
|   | side               |  |

|   | effect     |
|---|------------|
|   | s of di    |
|   | fferen     |
|   | t CDR      |
|   | metho      |
|   | ds?        |
|   | What       |
|   | are        |
|   | the        |
|   | relate     |
|   | d cons     |
|   | equen      |
|   | ces        |
|   | for ac     |
|   | counti     |
|   | ng?        |
|   | And,       |
|   | for so     |
|   | cietal     |
|   | adapt      |
|   | ations     |
|   | to cli     |
|   | mate       |
|   | chang      |
|   | e.<br>When |
| • | viner      |
|   | the C      |
|   | stored     |
|   | (land      |
|   | and        |
|   | ocean)     |
|   | and        |
|   | for        |
|   | how        |
|   | long?      |
|   | What       |
|   | are        |
|   | the co     |
|   | nsequ      |
|   | ences      |
|   | for ac     |
|   | counti     |
|   | ng         |
|   | and        |
|   | the re     |
|   | ward       |
|   | for        |
|   | the re     |
|   | move       |
|   | d C?       |
| ٠ | What       |

|   | happe         |
|---|---------------|
|   | ns            |
|   | when          |
|   | metho         |
|   | ds are        |
|   | combi         |
|   | ned?          |
|   | Does          |
|   | it            |
|   | affect        |
|   | efficie       |
|   | ncy or        |
|   | side e        |
|   |               |
|   | •             |
| , | TÊ            |
|   | 11<br>carbo   |
|   | n             |
|   | cvcle f       |
|   | eedba         |
|   | cks           |
|   | are si        |
|   | gnific        |
|   | ant           |
|   | and           |
|   | the ef        |
|   | fectiv        |
|   | eness         |
|   | of            |
|   | CDR           |
|   | assum         |
|   | ed by         |
|   | IAMs          |
|   | is red        |
|   | uced,         |
|   | what          |
|   | 1S<br>these   |
|   | the           |
|   | impos         |
|   | impac<br>t op |
|   | the           |
|   | scale         |
|   | and           |
|   | timin         |
|   | g of          |
|   | CDR           |
|   | deplo         |
|   | yment         |
|   | in var        |
|   | ious s        |
|   |               |



### Collaboration with other SPP 1689 projects

CDR-MIA will collaborate with the ComparCE, CE-LAND+, and CEMICS SPP 1689 projects. The CDR-MIA afforestation analysis will compliment and provide opportunities for collaboration with similar research in the ComparCE and CE-LAND+ projects. The ocean alkalinization analysis in CDR-MIA will also likewise compliment and provide opportunities for collaboration with similar research in ComparCE. Moreover, since the Max Plank Institute Earth System Model (MPI-ESM) is used in both ComparCE and CE-LAND+ and the UVic model, in ComparCE, this will provide an opportunity to investigate uncertainties and differences due to experimental design, as both models will also be participating in the analyzed CDR-MIP experiments. Furthermore, CDR or CDR-SRM combinations will be developed in close collaboration with the ComparCE project, as they have also proposed to investigate such combinations. The opportunity for cooperation with the integrated assessment modelling component of the CEMICS project, which is explicitly concerned with the economic assessment and impact analysis of socioeconomic scenarios that include a mix of CDR options, will occur because CDR-MIA investigators Nico Bauer and Jessica Strefler are also participants in the CEMICS project.